Stay on top!

Get helpful articles and special offers once a month.

nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista

Vista One

The original PiF microscope for nano‑IR chemical analysis. Vista One makes nanoscale chemical maps and point spectra with more detail than FTIR or nano-FTIR.
AFM topography with PiFM images of polystyrene and poly(methyl methacrylate)
光诱导力显微镜(PiFM)图像显示渗透有氧化铝的聚苯乙烯-聚甲基丙烯酸甲酯嵌段共聚物(PS-b-PMMA)。片层结构显示41 nm的完整节距,其中聚苯乙烯(PS)宽度仅为约9 nm。

最高分辨率表征

亚10纳米光诱导力红外光谱

  • 具备宽范围可调谐激光的1波数光谱分辨率(用于纳米红外实验)
  • 单分子层灵敏度

亚10纳米光诱导力显微镜化学成像

  • 单分子层灵敏度
  • 有机与无机材料

光学系统集成方案

专为适配任意光源设计

三维驱动抛物面镜将激发光聚焦于探针侧面,适用于任意波长光源。

悬臂梁快速对准技术

我们的悬臂梁对准芯片确保在更换悬臂梁期间,原子力显微镜(AFM)反馈系统与近场激光器的光学对准始终保持稳定。

nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista
Vista One的探头可拆卸以更换样品或针尖,且无需重新校准光路准直。
30 PiF-IR spectra taken across a polymer interface show chemical changes.
间距10纳米的光诱导力红外光谱(PiF-IR)显示出三种聚合物(环氧树脂、pDEGMA与SDIB)界面处的材料变化。

快速获取完整结果

专为高通量测量设计

  • 可调谐红外激光器可在100毫秒内完成全光诱导力红外光谱(PiF-IR)扫描
  • 利用现有傅里叶变换红外光谱(FTIR)鉴定材料。
  • 固定波长光诱导力显微镜(PiFM)图像可在数分钟内采集,XY方向扫描范围达80微米。
  • 更换样品时光路准直保持稳定。
  • hyPIR™成像技术与自动化主成分分析工具以最小工作量提供完整的图像与光谱数据集。

精密工程设计

电容传感器 + 光学编码器

我们的电动载物台具备6毫米行程与光学编码器,实现精密控制。原子力显微镜(AFM)扫描器中的电容传感器确保线性扫描精度达约100皮米均方根值。

双Z系统

无伪影快速样品成像:我们的双Z压电扫描器系统提供12微米垂直范围的大行程精准扫描。

AFM topography image with and without dual-z scanning
使用双Z压电系统时,精细形貌细节显著锐化。
nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista
低剖面探头具有稳定性,可支持上置物镜工作距离最小至13毫米。

可便捷操作且稳定的原子力显微镜探头

因瓦合金结构

探头与扫描器均采用因瓦合金制造,以实现最佳热稳定性。

低剖面稳定性

我们的低剖面原子力显微镜探头支持使用高数值孔径的上置物镜,提供卓越的样品光学视野。该探头还配备最稳定的安装结构,以实现低漂移与声学稳定性。

多功能光路配置

底部光学系统*

纳米精度独立扫描可实现激发光源焦点在三维空间移动。

多视角光学观测

  • 通过上置物镜、底部光学系统及抛物面镜,可从原子力显微镜(AFM)针尖的顶部、底部或侧面进行观测。
  • 最多可配置6组激光器用于光诱导力显微镜(PiFM)与光诱导力红外光谱(PiF-IR)。
PiFM diagram with AFM tip, parabolic mirror, and top plus bottom objectives
AFM针尖可从顶部、底部和侧面进行光学激发或观测。
Vista One microscope with metal vacuum/environmental cover on top.
配备探头环境/真空罩的Vista One系统。

可定制环境

可选环境

我们的可选环境/真空罩支持对整个显微镜环境进行定制。可在部分气压下使用任何气体工作、抽真空或控制湿度。

在您所需的环境中工作

无需低声操作

Vista One可安装于任意位置,我们的隔音罩、主动隔振台与外部线缆框架组合确保原子力显微镜(AFM)针尖保持静默。

热隔离技术

我们的隔音腔配备温控单元,使整个系统稳定在±0.1ºC范围内。*

nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista
图示为配备环境罩的Vista One红外套件。
nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista
Vista One框架支持定制化运行几乎所有光学原子力显微镜实验,包括散射式近场光学显微镜(sSNOM)、开尔文探针力显微镜(KPFM)或共聚焦拉曼光谱。

多功能与可定制性

任意光学技术

Vista One是我们设计的原始光诱导力显微镜(PiF),可处理任何光学实验。它同时支持散射式近场光学显微镜(sSNOM)、共聚焦拉曼以及多种定制实验方案。

定制化光学组件

我们使用ThorLabs等供应商的标准光学元件。这意味着您无需受限于专有系统,且Vista One本质上具备无限可配置性。

*这些功能需搭配可选配件使用。

基于典型实验室环境假设。任何原子力显微镜(AFM)在安静房间及稳定台面上性能最佳,因此实际结果因具体环境而异。

客户观点

“我们很荣幸首批获得Molecular Vista的VistaScope设备。过去几年中,我们使用VistaScope进行飞秒激光脉冲的光诱导力显微镜(PiFM)测量。尽管此类实验本极具挑战性,但VistaScope使其变得异常简便。Molecular Vista在扫描头设计上表现卓越,可相对轻松地实现光路与针尖-样品结的耦合。该系统稳定性高,能轻松配置附加光学元件,并由直观多功能图形用户界面控制。设备安装后我们立即获得了精彩的PiFM数据,并持续每日使用该系统。我们强烈推荐VistaScope给所有致力于光学照明与先进扫描探针实验结合的研究者!”

nano-IR,FTIR,nano-FTIR,nano FTIR,nano IR,AFM,vista
Eric Potma, PhD.Associate Professor | Department of Chemistry
School of Physical Sciences | University of California, Irvine
Irvine, CA 92697

Packages


Vista One IR

显微镜: Vista One框架

隔振系统: 主动隔振台与温控声学隔离罩

激光器: 量子级联激光器(QCL)可选配置

  • 蛋白质分析波段​​:专为蛋白质分析设计的激光器,覆盖1350-1860 cm⁻¹波数范围,可随时升级至全指纹波段。
  • ​氧化物分析波段​​:适用于有机与无机材料分析的激光器,覆盖760-1350 cm⁻¹波数范围,可随时升级至全指纹波段。
  • ​指纹波段​​:覆盖完整红外指纹区(760-1860 cm⁻¹)的激光器。

多路复用器: 中型配置

倒置光学系统: 可选功能

附加模块(可选): 环境/湿度/真空控制系统、加热样品台、偏振切换器、干燥空气过滤系统、开尔文探针力显微镜(KPFM)、导电原子力显微镜(cAFM)、压电力显微镜(PFM)、力-体积映射、光谱仪、光子计数器(SP-APD)、散射式近场光学显微镜(s-SNOM)模块


Vista One IR +s-SNOM

Vista One红外系统完整配置

附加项:

  • 多路复用器: 大型规格
  • 必须附加模块: s-SNOM 模块

Vista One IR +PL/Raman

Vista One红外系统完整配置

附加项:

  • 激光器: 可选量子级联激光器(QCL)或可见光二极管激光器
  • 多路复用器: 大型规格
  • 必须附加模块: 光谱仪

Vista One DIY

显微镜: Vista One 框架

隔振系统: 主动隔振台与温控声学隔离罩

激光器: 用户自备

多路复用器: 可选配置

附加模块: 可选功能

Specifications


Beam Deflection AFM Head (AFM-BD)

Body Material: Invar for excellent thermal stability

Body Profile: 12 mm thick to allow short working distance top objective lens

AC Detector Noise: <50 fm/root Hz above 100 KHz

Detector Bandwidth: 6 MHz

Cantilever Deflection Sensor Laser:  904 nm with finely adjustable beam steering and focus

Manual Translation Stage: 3mm movement in X and Y for coarse tip alignment to focus point of optional bottom objective lens

Fast-Z Module: 1 um z-piezo on cantilever mount serves as the Fast-Z element of high-speed Dual-Z feedback system

Operational Environment: Ambient air, optional open liquid cell, or vacuum/partial pressure with optional environmental chamber cover

Excitation Optics: Broadband (400 nm – 20 um) integrated parabolic mirror with 3D piezo-motor stage for tip-sample illumination for PiFM and reflection-mode s-SNOM


Forward Facing Tuning Fork AFM Head (AFM-FFTF)

Body Material: Invar for excellent thermal stability

TF Operation: Tapping-mode

Manual Translation Stage: 3 mm movement in X and Y for coarse tip alignment to external laser or focus point of bottom objective lens (for tip-enhanced spectroscopy)

Integrated Tip Scanner: X-Y flexure scanner built into head with 12 um x 12 um range for scanning the tuning fork

Fast-Z Module: 1 um z-piezo on cantilever mount serves as the Fast-Z element of high speed Dual-Z feedback system


Main Body Frame

Versatile frame architecture provides for multiple optical pathways to the tip-sample interface.

Inverted Objective Lens (optional): 100X 1.4NA Oil immersion lens or 60X 0.9A conventional lens forms the basis of a custom-designed inverted optical microscope for bottom viewing and illumination of the tip-sample interface.  Optional broadband reflective lens available for wideband IR illumination.

Tip Alignment Mechanism: Piezo-driven XYZ stage (12 um for XY and 100 um for Z) for the inverted objective lens for precise alignment of the focus spot onto the tip

Top Objective Lens: 20X, 0.42NA 20 mm working distance standard; shorter working distance (down to 13 mm) also supported for higher NA options

Top Objective Lens Focus: Motorized with stored focus position for fast return after tip or sample change

Illumination: Software controlled LED for top-down bright field illumination;  optional dark-field option available

CCD Camera: Concurrent top and inverted views ; digital zoom, pan, and capture

Tip-Sample Approach: Automated engagement

Sample Stage: Motorized precision stage with 6 mm x 6 mm travel range

Maximum Sample Size: 25 mm x 25 mm x 5 mm

System Noise: <90 pm RMS (dependent on environment)

Optical Configuration: Multiple optical pathways to bottom objective and side parabolic mirror provided; pathways are based on industry standard 1” cage system to allow user customization and expansion.

Sample Scanner: XYZ flexure stage scanner with 80 um x 80 um x 15 um scanning range (closed loop); Z sample scanner serves as the slow Z component of high speed Dual-Z feedback system.  Built-in capacitive sensors provide closed-loop scanning control for X and Y for superb linearity and accuracy; optional Z capacitive sensor available.

Scanner Material: Invar for excellent thermal stability

Scanner Sensor Noise: 0.15 nm RMS for X and Y with 0.08 nm RMS achievable with software controlled reduced scan range (20 um x 20 um)


High-Speed Electronics

FPGA-based control electronics has a section dedicated for high speed scanning probe microscopy.

Sampling Rate: >500 MHz for channels A & B; Channel A dedicated for photodiode detection for high speed AFM

Lock-in Amplifiers: 4 independent 2-phase lock-in amplifiers

Lock-in Frequency Range: 0-10 MHz

High Speed Sine Wave Generator: Two channels with 160 MHz sampling rates; one reserved for scan generator for high speed AFM

High Speed Feedback Mode: Dual-Z feedback where the sample scanner tracks large amplitude slowly varying topography and the Fast-Z Module in the AFM head rapidly tracks fine topography

Z Feedback Sampling Rate: 1 Mps with Dual-Z feedback

ADCs: 8×24-bit, 156 kHz; 4×24-bit, 156 kHz

DACs: 8×24-bit 156 kHz; 2×24-bit 156 kHz; 1×20-bit, 156 kHz

Stepper Motor Control: 3 channels

DC Motor Control: 3 channels with encoders and Schmitt-Trigger for improved signal quality

HV-Amplifiers: 10 channels

Noise Floor for Scan HV-Amplifiers: 0.5 uV/sqrt(Hz) typical


PiFM & Optics Electronics

Electronics for PiFM includes:

TTL Signal Generator: Two flexible TTL signal generators (with 160 MHz sampling rate) with adjustable duty cycle and DC offset for direct current modulation of laser diodes or for input to Bragg cells

Flexible Lock-in Referencing: Lock-in amplifiers can be phase locked to any other lock-in or at any calculated frequencies from the other lock-ins

Digital Counter Input: Input for avalanche photodiode or photomultiplier for low-light detection


Computer

Mounted in a 19″ rack. Minimum configuration includes i7 based Quad Core, 8GB RAM, 256GB SSD and 2000GB HD combination, 26″ or dual monitor support , 8×USB ports, Windows 10 64bit Professional


VistaScan Image Acquisition Software

Supported modes/features include:

  • Contact and AC AFM
  • STM and PLL feedback (for high Q sensors such as tuning-fork)
  • Ultrafast Dual-Z feedback
  • Q-control
  • Bi-modal force gradient imaging for linear and non-linear PiFM
  • Sideband force gradient imaging (for KPFM via electric force gradient detection)
  • Concurrent acquisition of 26 channels in Dual-Z configuration and 40 channels in Slow-Z configuration
  • Concurrent acquisition of 4 channels for each spectroscopy mode which may include
    • vs gap distance
    • vs bias with and without feedback
    • step response to voltage response with and without feedback

SurfaceWorks Image Analysis Software

Powerful and intuitive software. Features include:

  • Shape and histogram-based masks
  • Functions and analysis (flattening, FFT filtering, line & region analysis, 3D rendering, palettes, etc) applied to an image saved as a file property along with the raw data file
  • Copy/Paste file property to apply same functions and analysis to other image file(s)
  • Preview feature for most functions

Acoustic Enclosure

Optional acoustic enclosure (30W×30D×27H in3). Available with or without temperature control.

Comes with ports for cables and optical access. 


准备好提升您的实验室效能了吗?